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50 Years of data science
vs. immature data science discipline
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Ubiquitous data silos

vs. Incomplete data DNA and data genomics
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Data silos: every body, every organization, every where, every thing, every time, every behavior



Paradigm shift: Well-developed data analysis

- Immature data science

Feature engineering Deep representation

Standard analysis Deep analytics

Descriptive analytics Advanced analytics

Data characteristics
characterization

Data distribution fitting

Explicit analytics Implicit analytics
L. Cao. Data
science
Shallow learning Deep learning ..
thinking,

Springer, 2018



Complex real world

vs. often simple, specific solutions and results

Complex environment/system/infrastructure
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X-complexities and X-intelligences

vs. Highly simplified assumptions
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Systems, LNCS4845, 2007
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ACM, 2017


http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/wimbi07-cao.pdf

Massive data potential

vs. Significant capability/capacity gaps

A Potentials:

- Data availability

- Data complexities
- Possible values and impact
- Organizational needs

Objectives and possibilities:

- We do not know what we do not | - Unforeseen opportunitie
know; |

- Blind people can recognize an |
elephant; !

- Do the right thing in the right form at |
the right time for the right people;

- Make the impossible possible

Indicators

Critical challenges:

e Couplings

e Heterogeneity

e Real-time

e High invisibility

e High frequency

e High uncertainty

e High dimensionality
e Dynamic nature

e Mixed sources

e Web scale

e Human-like thinking

Time

L. Cao. Data
science
thinking,
Springer, 2018



Fantastic theories and models

vs. Tailored data fitting and low actionability

b) Inadequate data fitting c¢) Inadequate model fitting

(a) Perfect fitting

L. Cao. Data

science
thinking,
Springer, 2018

(d) Limited fitting (e) Failed fitting
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Statistical comparison of machine learning algorithms:
paradoxes, dilemmas, and open problems

Daniel Berrar
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Abstract The experimental comparison of machine learn-
ing algorithms is routinely underpinned by null hypoth-
esis significance tests. When multiple classifiers are com-
pared on multiple data sets, global null hypothesis tests
are nowadays widely applied. The Friedman test has es-
tablished itself as the method of choice for this purpose.
Here, we analyze paradoxes, dilemmas, and open prob-
lems that this common practice entails. Our conclusion
is that the Friedman test is not suitable for the sta-
tistical comparison of multiple classifiers over multiple
data sets. Alternative methods for multiple testing are
no solution, however, becanse the problem is a deeper
one: the p-value is a recondite measure, and benchmark
studies in machine learning would benefit from aban-
doning statistical significance.

Keywords Friedman test; p-value; significance test;
paradoxes

1 Introduction

Significance tests have become firmly embedded in the
minds and habits of machine learning researchers. Specif-
ically, such tests nowadays routinely accompany com-
parative studies and are even sometimes stipulated in
guidelines for reviewers, In arguably one of the most
common experimental designs, several classifiers are com-
pared based on their performance over multiple bench-
mark data sets. Here, the Friedman test has established
itself as the method of choice to test the global null hy-
pothesis that there is no difference in performance [17).

D. Berrar

Data Science Laboratory

Department of Information and Communications Engineering
Tokyo Institute of Technology, Japan

E-mail: daniel berrartict.e.titech.ac.jp

Int. J. Data Science and Analytics

‘e believe that the widespread popularity of such tests
is due to a genmine desire of researchers to underpin the
interpretation of their experimental studies with an ob-
jective, rigorous method as a safeguard against chance
findings. However, there are a number of underrated
paradoxes, dilemmas, and open problems that are due
to this practice. Our most important results is that the
widely used Friedman test is not suitable for the com-
parison of learning algorithms, We also argue that al-
ternative omnibus tests are no solution, either, because
the problem is a deeper one: the p-value is of very lim-
ited use for model evaluation and selection.

Arguments against the p-value have been made for
decades, notably in psychology [44,12,46,47,23] and
biomedicine [26,43,52). The problem is not only that
significance tests are frequently misused and p-values
misinterpreted [27], but also that they are an impedi-
ment to cumulative scientific knowledge [46]. In 2016,
the American Statistical Association (ASA) addressed
the p-value problem, concluding with a set of guidelines
for the proper use of p-values and significance tests [54].
The special issue “Statistical Inference in the 21st Cen-
tury: A World Beyond p < 0.05", published in The
American Statistician in 2019, contains 43 papers on
the p-value problem, but without converging on a con-
sensus on the role of p-values in statistical inference
[55). Decades of criticisms of the p-value have had vir-
tually no impact on the statistical practice in empirical
research [11], and it is questionable whether the ASA
statement will be able to improve the status quo [33].
The decision rule p < 0.05 is still almost always the de-
cisive factor in the decision process of whether a study
will or will not be accepted for publication [37].

Like many other sciences, the field of machine learn-
ing embraced the p-value in order to make statistical
inferences [45,18,17). Recently, however, the use of sig-

International Journal of Data Sclence and Analytics (2019) 7:247-257
https://dol.org/10.1007/541060-018-0148-4
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Should significance testing be abandoned in machine learning?
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Abstract

Significance testing has become a mainstay in machine learning, with the p value being firmly embedded in the current
rescarch practice. Significance tests are widely believed to lend scientific rigor to the interpretation of empirical findings;
however, their problems have received only scant attention in the machine learning literature so far. Here, we investigate
one particular problem, the Jeffreys-Lindley paradox. This paradox describes a statistical conundrum: the p value can be
close to zero, convincing us that there is overwhelming evidence against the null hypothesis. At the same time, however, the
posterior probability of the null hypothesis being true can be close to 1, convincing us of the exact opposite. In experiments
with synthetic data sets and a subsequent thought experiment, we demonstrate that this paradox can have severe repercussions
for the comparison of multiple classifiers over multiple benchmark data sets. Our main result suggests that significance tests

should not be used in such comparative

studies. We caution that the reliance on significance tests might lead to a situation

that is similar to the reproducibility crisis in other fields of science. We offer for debate four avenues that might alleviate the

looming crisis.

Keywords Jeffreys-Lindley paradox - p Value - Significance test - Bayesian test - Classification

1 Introduction

Significance testing is increasingly used in machine leamning
and data science, particularly in the context of comparative
classification studies [9]. For example, the Friedman test has
been widely used for comparing multiple classifiers over
multiple data sets [ 18]. Suppose that we wish to compare a
new classifier with three other classifiers. Let us assume that
we compare their performance over 50 benchmark data sets,
We use the Friedman test to test the global null hypothesis of
equal performance between the four classifiers. Suppose that

This paper is an extended version of the DSAA2017 Rescarch Track
paper titled “On the Jeffreys-Lindley paradox and the looming
reproducibility crisis in machine learning™ [11].
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we obtain a p value of 0.001. How should we interpret this
result? We would like to invite the reader to briefly ponder
over this question.

The question might seem silly, as the answer seems all too
obvious: “Reject the null hypothesis of equal performance.™
But is this the correct interpretation? As we will discuss, the
answer 1o this question is far more complicated than it seems.
Paradoxically, the p value can be close 1o 0, yet the posterior
probability in favor of the null hypothesis can be close to 1. In
other words, it is possible to obtain a very small p value, but
the evidence after the experiment ¢ nvinee us that the
null hypothesis is almost ¢
was first observed by Je
conundrum in his semi
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Coupled/entangled nature/realities

vs. decoupled and disentangled representations

How can we achieve Couplings in real-life data,

unsupervised learning of disentangled representation? behaviors and systems:

* Value couplings

* Feature couplings

e Relation couplings

e Structure couplings

* Distribution couplings
* Object couplings
 Ensembled model

In general, learned representation is entangled,

I.e. encoded in a data space in a complicated manner

! couplings
When a representation is disentangled, it would be . R
N |  Result couplings

Generative Adversarial Networks (GANs) and Disentangled Representations,
NeurlPS2018



The status has not been fundamentally changed:

Immaturity of Capability/Capacity High

—
o

We do not know what we do not know

Know -> Do Not Know
Blind CKI Unknown CKI
Spa;e C) (Space D)

Invisibility of Data/Physical Worlds

_ Hidden CKI
- (Space B)

Do Not Know

Know

L. Cao. Data
science:
Challenges and
directions,
Communications
of the ACM, 2017



Data science and New-generation Al:

The unknown world

Unknowns C lexiti
in Data Science S L. Cao. Data

science:
Challenges and
directions,
Communications
of the ACM, 2017

Opportunities




One Specific Challenge




Data/behavior/system non-lIDness

vs. |ID assumptions and learning systems

A Real-life data/behavior/systems:
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Non-|ID Learning

Tutorials: CIKM/KDD/IJCAI
tutorials

Website:
noniid.datasciences.org



Non-1ID Learning: fundamental yet challenging

IIDness:
Independence +
Identical Distribution
Non-IlIDness:
Couplings +
Heterogeneities

0,, 0,, O;areiid
d;=[[05-Of] (b)
HD Learning

{a) Learning

problem N (C)”D IID learning dominates
on- . . .
0,, 0,, O, share different distributions  ;eqrning classic analytics and learning
d;=]]05-0] | in Al, KDD, ML, CVPR, and
||

O3(ry3,rp3) —O(dy,d,) || statistics research and
methods



Non-IID power: Rich aspects of non-1IDness

Non-lIDness does not limit itself to statistical dependency and non-identical distributions

Non-lIDness Aspects Hierarchical Non-lIDness

Multi-layer Multi-framework
( Pattern relation )

( Measure aggregation )
B AN REAREEA (  wmethod ensemble )
P EEYSE LI BRI (BEEIEGLE
283233 §-¢§ [§8" ¢ 5388 -9 : : :
e g § :ng § =3 § s g g LR 3‘ (Mu"tl'SOUl(C -ntcgtatnonj
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£ ? § g E § § a8 © § = g € £ g 83 S 8 3 ¢ Valoe maltching
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Cao, Longbing. Coupling Learning of Complex Interactions, IP&M, 51(2): 167-186 (2015)



http://www-staff.it.uts.edu.au/%7Elbcao/publication/JIPM-online.pdf

. Problems of IID learning and results

 Results learned by IID analytical/learning methods and algorithms on
non-IID data could be:

Data Structure Index: DI

10 -
8r o |
6} | : C. Wang, et al. Coupled
0 - Attribute Similarity Learning
4+ g | - on Cateqgorical Data, IEEE
g _ Transactions on Neural
2w—8—g g y 4 Networks and Learning
B Systems, 26(4): 781-797
' (2015)

Mo B S5s £Z H V Be Tic L Mu
Data Sets


http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/TNNLS-Wang15.final.pdf

Non-IID Learning: A Significant Area




Non-|
paradig

O

Real-world data, behavior and systems are non-
IID, requiring a non-1ID paradigm to understand:

Data/behavior/system non-lIDness

Non-11D similarity/dissimilarity
metrics/measures

Non-IID representations
Non-IID learning systems
Non-IID objective functions
Non-IID optimization theory
Non-IID inference theory

New perspectives ...



Non-lID Metric
Learning

C. Zhu, L. Cao, Q. Liy, J. Yin
and V. Kumar. Heterogeneous
Metric Learning of
Categorical Data with
Hierarchical Couplings. TKDE,
2018.



Motivation
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Hamming distance: Dis(H,l) = Dis(H,L) =1 High (H) level commitment is closer to intermediate

(1) instead of low (L) level.
Frequency-based distance:  Dis(H, ) = 0 H commitment is different from I.



Problem statement

Distance
Space

X minimize Div(O||%)

X

Categorical

subjectto 0 ~ O
X ~ X
d(Oi, Oj) =X; ® X

Distance metric d(., .) satisfies:

N 1) d(o;,05) +d(oj,0x) > d(0;,0k),
A N Embedding 2) d(o?}: Oj) > 0,
HREE 3) (L\((O,,;j Oj) = d(OJ'? OL)




The HELIC framework: A multikernel approach

Prior/

Implicit

D()

Side
Information

Heterogeneous
Kernel Spaces 1

Intra-attribute
Coupling Spaces

[

Mr(.)

Heterogeneous
Kernel Spaces 2

Inter-attribute
Coupling Spaces

MIE(-)

(

\

Categorical Data

)

Heterogeneous
Kernel Spaces 3

Attribute-class
Coupling Spaces

Mac(.)

J

HELIC: Heterogeneous Metric Learning with hlerarchical Couplings

Metric
Learning

Explicit/

observed

Heterogeneity
Learning

Couplings
Learning



Coupling learning: Value-to-class couplings

Learning Intra-attribute Coupl‘lri/<
Capture value fr@
J
() (,0)) _ 99 (

mIa,

Learning Inter-attribute COUp|IngS/@V3|U€ CO- OC@
(7) (J) J J

mp, (vi') = | p(v\?|v.1), ()|V*|v\

Learning Attribute-class Couplings Capture value distribution @

m ) = pvPler) - pvPlen,)




Heterogeneity learning: Distributions,
structures, couplings, etc.

Construct Kernel Spaces:

[ k(mp,my)  k(mpmp) oo k(mpm ) ]
k(mgaml) k(mzjmz) k(mZamn(j))
K= :
_k(mn&j)’ml) k(mngj)’mﬁ o k(mngj)’mngﬂ)_

Using various kernel functions for the value-to-class coupling spaces, a set of kernel
matrices {Ky, -, Knk} can be obtained. Further, a set of transformation matrices

{T1, -+, Ty, } can be learned to guarantee that the space of the p-th transformed
kernel K, only contains the p-th kernel sensitive information, where the K, is defined

as:

K/ =T, K,



Metric learning

With a positive semi-definite matrix w, = aprTTp, the metric d;; is calculated as :

Nk

Z kp,zs' P (]

wherek, ;i =K, ;. — K, ;.

- diag 0 0 .
The distance can be represented as ! diag
0 w, 0
W = _
e : : .
- 0 0 . LM,dlag

- L -
dij = kazg‘-‘-’p Pij

_ T T T
L’ kZJ — [ kl,ij k2 a7 knk,zj ]



Metric learning: Objective function

Objective function: [ Selecting the kernels for theij

L 1 sensitive data distribution
minimize ) Z Eii + A|wl1

b
“ ° i,jEN, \/

subjectto  w = 0,
wr =0 for k#I,
T
Force the distance between &j > 0,Vi,5 € No.

objects from different - {1, c(0;) = ¢(0;)
classes larger than a margin "1, elor) # (o)




Representation performance of HELIC

KNN Classification F-score (%) with Different Distance Measures

Data HELIC COS MTDLE Ahmad DILCA Rough Hamming A%
700 1007 1007 1007 100¥ 1007 97.75+11.11 1007 0.00%
DNAPromoter 92.90+5.85* 75.89+13.35 81.67+10.19 79.98+9.14 90.334+10.31 81.16+10.30  78.05+12.00 2.85%
Hayesroth 90.851-5.07* 79.6449.71 68.54+-10.55  52.264-10.20 54.604-12.58 81.50-+8.59 61.734+12.40 11.47%
Audiology 75.44-4-7.60* 41.514+7.20 36.7047.50 54.29+48.96 64.834+8.04 36.37+7.60 58.554-10.30 16.36%
Housevotes 96.65 + 3.40 9428 + 495  91.09 555 9581 +4.15 94.90 + 4.14 91.59 +5.14  93.77 - 5.30 0.88%
Spect 53.09 +10.35* 51.3149.16* 52.94+948*  52.7049.69* 51.11+£8.97* 51.18+£7.90*  51.98+8.85* 0.28%
Mofn3710 94.39 15.86* 79.3549.07 68.74+10.58 79.3549.07 71.2148.42 77.70+11.44 74.824-8.08 18.95%
Monks3 100* 34.85+4-0.00 99.884-0.52* 34.85-0.00 34.85-+0.00 100* 92.0645.24 0.00%
ThreeOf9 91.01 +2.93* 32.0040.00 75.88-4-8.41 32.00-£0.00 32.00-£0.00 78.844-5.09 78.844-5.09 15.44%
Balance 58.91 +1.31* 21.2540.00 41.80+5.82 21.2540.00 21.2540.00 39.32+4.25 39.32+4.25 40.93%
Crx 83.2645.68* 78.58+4.74 77.54+5.68 82.79 +3.86* 81.024+4.08 77.63+5.12 78.28-+4.87 0.57%
Mammographic 79.61 +4.59* 70.224+7.12* 70.14+7.10*  70.20+7.02* 70.224+7.81* 69.79+7.11*  69.95+7.29* 13.37%
Flare 59.88 4 3.36*  57.01 -=438* 5711 +£3.09 5441 + 339 55.61 + 3.13 55.88 + 438  54.98 + 4.00 4.85%
Titanic 23.33 + 2.48" 10.54 + 1.76 10.06 + 0.62 10.06 + 0.99 10.54 + 1.76 10.54 + 1,76 10.54 + 1.76 || 32.48 %
DNAnominal 93.12 + 1.05* 7752 + 1.21 52224000 8033 4+ 1.48 91.65 + 1.39 81.46 + 1.75  69.11 &+ 1.45 1.60 %
Splice 93.69 + 1.11* 7725 4+ 219 24454000  79.85 4+ 2.07 84.96 4+ 2.21 81.05 - 1.81  69.29 4+ 2.24 10.28 %
Krvskp 96.98 -+ 1.06* 91.77 £ 1.66  90.04 + 1.65  92.46 + 1.74 91.39 + 2.05 89.00 + 1.43  91.48 + 1.68 4.89%
Led24 63.37 4+ 1.94*  62.11 = 1.85* 4135+274 6181 4 1.98* 6258 + 1.85* 4789+ 237 4157 + 2.19 1.26 %
Mushroom 100 + 0.00* 99.98 + 0.06* 100 £ 0.00* 100 + 0.00 * 100 + 0.00* 100 + 0.00 * 100 + 0.00* 0.00%
Krkopt 53.62 + L.71*  52.66 &+ 0.78* NA 52,50 4+ 0.96* 5257 4+ 1.02* 3905+ 0.70 1042 4+ 0.10 1.82%
Adult 84.91 + 0.86* 68.13 + 1.12 NA 68.20 + 1.07 68.16 + 1.14  67.76 -+ 1.04  68.01 + 1.04 24.50%
Connect4 56.33 4 0.78* 48.23 + 0.73 NA 46.95 + 0.49 46.65 + 0.55 5322 +£ 073 4581 £+ 0.72 5.84%
Census 68.93 + 0.55* 66.88 + 0.40 NA 67.47 + 043 66.66 + 0.42 66.96 + 0.55  67.16 = 0.37 2.64%
Mean 78.71% 63.95 65.27 63.89 65.09 68.51 65.47 14.89%




Representation quality of HELIC

(e, 7)-good of Different Similarity Measures in DNAPromoter
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KNN Classification F-score (%) with Couplings

Dataset HELIC-KNN HC-KNN A%
Zoo 100 100 0%
DNAPromoter 92.90-+5.85 94.93+7.00 0%
Hayesroth 90.851+5.07 85.89+6.39 5.77%
Audiology 75.441+7.60 54.944+11.85 37.31%
Housevotes 96.65 £ 3.40 9543 1+ 4.46 1.28%
Spect 53.094+1035  51.40-£9.51 3.28%
Mofn3710 94.39+5.86 94.9243.36 0%
Monks3 100 100 0%
ThreeOf9 91.01+£2.93 89.961+2.92 1.17%
Balance 58.91+1.31 59.64+1.46 0%
Crx 83.26+5.68 82.431+4.39 1.01%
Mammographic 79.61+4.59 70.31+£7.00 13.23%
Flare 59.88 £3.36 5540 £+ 3.93 8.09%
Titanic 2333 £248 12154+ 1.65 || 92.02%
DNAnominal 93.12 +1.05 91.83 + 1.64 1.40%
Splice 93.69 = 1.11  75.88 +2.03 || 23.47%
Krvskp 96.98 £ 1.06  92.49 + 0.92 4.85%
Led24 63.37 £ 1.94 57.71 +2.46 9.81%
Mushroom 100 4 0.00 100 £ 0.00 0.00%
Krkopt 53.62 = 1.71 5244 + 1.58 2.25%
Adult 8491 + 0.86 84.324+0.80 || 0.70%
Connect4 5633 £0.78  43.07+£ 050 || 30.79%
Census 68.93 +0.55 64.23 +0.49 7.32%
Mean 78.71 74.32 5.91%

Classification performance of HELIC

» HC: only learn the hierarchical

couplings.

» HELIC: learn both hierarchical
couplings and heterogeneity.



Flexibility of HELIC

LR, RF and SVM Classification F-score (%) with HELIC and MTDLE

Data HELIC-LR MTDLE-LR A% HELIC-RF MTDLE-RF A% HELIC-SVM  MTDLE-SVM A%

Zoo 100 92.50 4+ 11.75 8.11% 100 99.64 4+ 1.63 0.36% 100 100 (0%
DNAPromoter 98.48 & 3.70  89.84 £ 10.89 9.62% 93.88 £9.02 7487 £ 11.89 | 25.39% 97.98 + 4.15 89.884+10.35 9.01%
Hayesroth 83.56 £ 6.53 83.23 £ 8.16 0.40% 82.51L£7.85 79.804% 10.66 3.40% 84.44 £ 8.62 81.64 £ 8.76 3.43%
Audiology 73.63 £633 4988 + 1026 | 47.61% 73.04 =730 3923 &£ 13.19 | 86.18% 73.47 £ 6.07 62.154+10.70 18.21%
Spect 69.10-4-12.68 51.31 4+ 8.79 34.67% 69.38--11.94 69.17 £15.11 3.04% 69.654£12.22  69.33 4+ 12.33 0.46%

Mofn3710 100 83.13 £ 1647 | 20.29% 81.6219.03 67.974 9.94 20.08% 100 100 0%

Monks3 97.21 £ 1.79 100 0% 100 99.88 + 0.52 0.12% 100 100 0%

ThreeOf9 80.54 £ 5.05 79.52 £5.20 1.29% 99.71+0.96 97.14 £ 2.60 2.65% 79.37L£5.61 79.46 £ 5.48 0%

Balance 91.24 4+ 7.00 63.94 1+ 0.06 42.70% 58.5241.86 58.17 £ 2.24 0.60% 97.451+2.49 98.09 + 2.44 0%
Crx 85.76 -+ 4.86 83.96 -+ 4.82 2.14% 85.15:4£3.72 84.21 4+ 4.00 1.12% 84.98-+-4.79 76.10 4+ 5.99 11.67%
Mammographic 82.62 £ 5.13 82.36 = 4.53 0.32% 82.7545.36 80.61 + 4.78 2.65% 82.59+4.32 80.91 £ 5.45 2.08%
Mean 87.96 78.51 12.04% 84.99 T7.84 9.19% 88.61 85.91 3.14%

The HELIC framework can be incorporated into different classifiers



Scalability of HELIC

Time Cost of HMLHC

15 Time Cost of HMLHC

25 Time Cost of HMLHC

. 40
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Number of Objects Number of Attributes Maximum Number of Values in Attributes
(a) Time Cost v.s. Number of Objects. (b) Time Cost v.s. Number of Attributes. (¢) Time Cost v.s. Number of Attribute Values.

The Time Cost of HELIC w.r.t. Data Factors: Object Number n,, Attribute Number n,, and Maximum Number of Attribute Values n,,.. The

solid line refers to the total time cost of HELIC. The dotted line refers to the time cost of the hierarchical coupling learning parts. The star line refers
to the time cost of the heterogeneous metric learning parts.



Scalability of HELIC

Training Loss

Loss Value




Comments

What if different categorical
attributes have different non-
[IDness?

Change kernel representations
to other representations e.g.,
deep representations,
probabilistic representations?

What if the input are mixed
with non-IID numerical data
and non-IID categorical data?

How to address the curse of
non-lIDness?



Statistical Learning of
Large, Sparse, Dynamic
and Multisource data

Tutorials: PAKDD19/AAAI20 tutorials

T. Do and L. Cao. Gamma-Poisson
Dynamic Matrix Factorization
Embedded with Metadata Influence,
NIPS2018.



Large, sparse, dynamic and multi-source data
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Challenges to statistical learning

 Latent feature learning

* Latent relation learning

* Matrix factorization

* Dynamic learning

* Incorporating multisource data
* Inference

e Sampling



Gamma-Poisson dynamic matrix factorization model
incorporated with metadata influence (MGDMF)

User's Static Portion User's Dynamic Portion

Enrich prior of
user’s static
portion using
metadata

« Model dynamics
| of a user

Enrich prior of
item’s static
portion using
metadata

« Model dynamics
? of item

Item's Static Portion Item's Dynamic Portion




MGDMF: Generative process

|. Metadata Integration:

(a) For each user:

i. Draw the weight of m'" attribute in user metadata hu,, ~ Gammal(a',b')

v J'u- W, T
ii. Draw latent user preference &£, ~ Gammala. ], _, hulit )

iii. Draw global static factor Eu b~ (}'a_m.;'n_.g{h__ & 1.) i. Draw initialized state of local dynamic factor #,,;. | ~ Gamma(ag, agbg)

ii. For each time slice t > 1:

(b) For each item:
i. Draw the weight of n'" attribute in item metadata hi,, ~ Gamma(c, d') A. Draw anxiliary Varliable Auk,t—1 ~ Gamma(ay, axBuk,—1)
. . . . N Fiin B. Draw local dynamic factor €, ; ~ Gamma(ag, agAuk.t—1)
ii. Draw latent item attractiveness 1j; ~ Gammal(ce, [[ _, hin™") (b) For cach item:
lii. Draw global static factor 5;,, ~ Gammal(d, ;) 1. Draw initialized state of local dynamic factor 3;, , ~ Gamma(ag,agbg)

ii. For each time slice t > 1:
(a) For each user: A. Draw auxiliary variable ¢;, ;1 ~ Gammal(a,,a,3;1—1)
B. Draw local dynamic factor 3., ~ Gammal(ag, agtik 1)

2. Dynamic Modeling:

3. For each rating:

(a) Draw Yuiz ™ PEJ'E'SSOH‘(Z!C (HUk,t + auk:](.{t'k,t + E;‘k))



Inference

= Variational Inference for mGDMEF (still statistically i.i.d. though):
= The mean-field family assumes each distribution is independent of the others.

q(hu, hiy €,0,0,8,0,1.0, 8, 2) = [ [ a(htim|n) [ T a(Pinlpn) [T a(Gulrn) T a(nilm)

T

HQ{EUHFH.‘:} Hﬁ’ﬁzﬂﬁmj H q(Ouk t[Vuk,t) H q(Bike|Hik.¢) (3)

u, k ik .kt ikt
H "?I:}'luk.tk.fuh::t} H rf'[i'ik-”wik_t) H ff{zTii_t:k|‘;j1Li._t.k}
LT ikt ..tk

We use the class of conditionally conjugate priors for hit,,, hiy, Eu. is Buks EH.:'-' Oouks Auk.ts ik
Lik+ and z,; ¢ . to update the variational parameters {(, p, 5, 7, V, [, 1,7, jt. w, ¢ }. For the Gamma
distribution, we update both hyper-parameters: shape and rate.



Inference

Table 1: Latent Variables, Type, Variational Variables and Variational Update for Users. Similar
variables for items (i.e., hi,, 1:, 3,5, ik, tir.+) can be found in the supplementary. N, is the number

of users having the m'" attribute, K is the number of latent components, and W (.) is the digamma
function. The Gamma distribution is parameterized by shape (shp) and rate (rte).

Latent Variational

Variable Type Variable Variational Update

-H’lp

hi,, Gamma (7 (ote a' + N,.a, b’ +Eu w1t
shp e I:shp Friy m Fﬁh]’r
£y Gamma k"7, k., a+ Kb, ]_[m 1 (E?:f‘_) +3 . _EL_’E
h te h —rt
e Mit o, (VO — logGAE)} +eap{¥ @) — log(Ti)D
ELE 1E 5 i
s(exp{W¥(p; ) — log(pis } +E-TP{‘I"(J-H3¢ ) — log(fix))})
— shp —rie .*hp —““i"-' :;:"T':
& ke Gamma ¥, .V, b"'“zltyua t¢u1tLaT+z (mT—FZt —m—)
U::I-;_ g + @y + Z Y, ifn:l'ui- t.k
E’I k.t Gam]“a i "‘j'-]'-’ _~.:.hp Hi.ﬁ.p
’ Vi agby + ax it + 3, (_—m— - —E—)
y‘:.l.k‘:t,lzf:b-l:l ﬂ'l[-',__,:'lh—_ + 5% :'Ii.t + E ( :i.e :'En;: )
Tuk,t—1 Hak 't
-n’lp shp

shp rie & kot+1
Auk.t  Gamma Vuk.t> Tuk,t ay + ag, ax —1—TL, + ag —1-—:‘k, -~
u




Experiments

* Datasets:
* (1) Netflix-Time, Netflix-Full [Li et al., 2011].
* (2) Yelp-Active [Jerfel et al., 2017].
* (3) LFM-Tracks, LFM-Bands [O. Celma Herrada, 2009].

e Baseline methods:

e Static:

 HPF ‘Gopalan et al., 2015], HCPF [Basbug and Engelhard, 2016] as it outperforms many
baselines in MF including NMP, LDA and PMF.

* PF-last and HCPF-last are trained by using the last time slice in the training set as the
observations.

e HPF-all and HCPF-all are trained on all training ratings.
* Dynamic:
* dPF [Charlin et al., 2016] and DCPF [Jerfel et al., 2017].

* dPF was shown to outperform state-of-the-art dynamic collaborative filtering algorithms,
specifically, BPTF and TimeSVD++.



Effect of metadata and dynamic data modeling

0.5
0 mLDME il LDOME dFF
0. @ HCPF-all @ HCPF-last Hr"l'-all B HPF-las1
D.3 0.3 @ mGDMF @ GDMF DCPF dPF
@ HCPF-all @ HCOPF-last HFF-all B HFF-last
.2
o I I TRI™IT I. o Mk,
Hewflix-  MNetflix- Yelp- LFRi- Metflis-  Metflix- Yelp- LFRi-
Time Fuli ACTive Tran:hc5 Bancls Time Full AcTive Tl-al:liﬁ Bancls
(a) Precision@3s() (b) Recall@h()

Figure 1: Top-50 Recommendations Compared with Baselines.



Effect of metadata and dynamic data modeling

Table 2: Predictive Performance on Five Datasets w.r.t. NDCG and AUC.

Netflix-Time Netflix-Full Yelp-Acuve LFM-Tracks LFM-Bands
NDCG AUC NDCG AUC NDCG AUC NDCG AUC NDCG AUC

mGDMF 0.389 09145 0403 09321 0.494 0.8650 0310 03245 0367 0.8217
GDMF 0367 09121 0398 09320 0416 08512 0275 08101 0354 0.8139

DCFPF 0.293 09023 0315 08991 0357 08418 0231 038098 0275 0.8011
dPF 0.257 09012 0301 08901 0332 08321 0210 038019 0298 0.8122
HCPF-all 0.241 08012 0245 08370 0.243 08032 0209 07010 0213 0.79121
HCPF-last 0.183 07423 0201 07600 0.172 07312 0.132 05893 0.160 0.6101
HPF-all 0231 08035 0250 08124 0248 08130 0.179 07084 0.184 07013
HPF-last  0.162 07213 0.198 0.7540 0.145 06810 0.143 0.6050 0.141 0.5982

dminl¥) 3276  1.35 2794 367 3838 276 3420 1.82 2315 1.70
Omax(7e) 140012 2678 10354 2362 240.69 27.12 13485 4483 16028 37.36




Effect of sparse users/items and ‘cold-start’

T

LR LB

(2) mGDMF (b) GDMF (c) DCPF

Figure 2: Percentage (%) of Sparse Items Recommended Precisely for 10 Users by mGDMF, GDMF
and DCPE



Case study of mGDMF-based recommendation
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Figure 3: Analysis on two users ‘270" and ‘U437 with the same metadata in Last.fm. The number
of times that users listened to two ‘rock’ and “pop’ tracks with 16 time slices i1s shown on the left. The
distribution of the number of times that /270 and U437 listened to top 10 ‘rock’ and ‘pop’ tracks
and the topll) precise recommendations by mGDMF are shown on the right.



Comments

How to cope with
observable variables with
different distributions?

When multiple distinct
distributions are coupled,
how to statistically learn
them in one model?

When latent variables are
non-11D, how to conduct
the sampling and
inference?

How can deep Bayesian

learning capture various
non-lIDness in complex

data?



Learning from low quality,
ultrahigh-dimensional data

Learning Representations o
for Random Distance-based Outlier Detection, KDD2018

Sparse Modeling-based Sequential Ensemble Learning
for Effective Outlier Detection in High-dimensional
Numeric Data. AAAI2018.

Learning Homophily Couplings from Non-IID Data for
Joint Feature Selection and Noise-Resilient Outlier
Detection. 1JCAI2017

Selective Value Coupling Learning for Detecting Outliers
in High-Dimensional Categorical Data. CIKM2017.

Unsupervised Feature Selection for Outlier Detection by
Modelling Hierarchical Value-Feature Couplings.
ICDM2016.



Non-IID Real-life Data

Couplings Heterogeneity

KNOW THE DIABETES WARNING SIGNS!
© o %

Frequent

urination r

Tz |
4 Jg
Lack of Excessive
energy ‘ I phirst®
- i,

Source: http://www.diabeticrockstar.com Four features from the CoverType data set

-
0 08 1



Non-IID value-based approach

R _ Data CBRW CBRWiec CBRWia | MarPT MarP FPOF COMP FORE
Data-driven CUOT Framework Applications BM 06287  0.6566 05990 | 05778 05584 05466 06267 05762
. Census 06678 06579  0.6832 | 0.6033 05809 06148 06352 05378
; AID362 0.6640 06324 06034 | 06152 0.6270 o 06480 0.6485
Intra-feature § Feature Weighting wT7a 0.6484  0.7338 04453 | 04565 04723 o 05683 0.4053
Outlier Factor Model for and Selection CMC 0.6339 06323 06179 | 05623 05417 05614 05669 05746
Estimating Value APAS 08190 08624  0.8730 | 06208 06193 o 06554 04792
Data , Y CelebA 08462  0.9108 07135 | 07352 07358 07380 07572 0.6797
Objects Inter-feature Outlier Score Outlying Object Chess 0.7897 04058  0.7766 | 0.6854 0.6447 0.6160 0.6387 0.6124
. : , AD 07348  0.8270 07250 | 07033 07033 o e 07084
Outlier Factor ’ Detection SF 08812 08833  0.8867 | 0.8460 08446 08556 08526 0.7865
Probe 00906  0.0007 00434 | 00795 0.9800 0.9867 00790 0.9762
"""""""""""""""""""""""""""""""""""""""""""""""""""""""" U2R 00651 00640 08817 | 0.8848 0.8848 09156 0.9803 0.9781
. . . LINK 00976 ~ 00076 00076 | 0.0077 0.0977 0.9978 00973 0.9917
Intra-feature couplings: Inter-feature couplings: R10 0.9905 00003 00823 | 09866 009866 o 009866 09796
1 _ T cT 00703 00703 00388 | 09770 0.9773 009772 009772 0.9364
o(v) = =[base(m) + dev(v)] qy = [n(w,v), ...,n(w, v)] Avg.(Top-10) 07314 07202  0.6925 | 0.6407 0.6337 0.6554 0.6610 0.6009
2 freq(u, v) freq(w,v) Avg.(All) 08152 08077 07779 | 0.7488 07442 07810 07770 0.7247
=" 7 AT CBRWvs. 07950 00302 | 0.0012 0.0008 00115 0.0147 0.0040
freq (v) b freq (v) ’ palue CBRWie vs. 04225 | 0.0969 0.0592 0.4316 0.3167 0.0446
base(m) = 1 — freq(m) CBRWia vs. | 01460 0.1223 02886 0.8490 0.0979
Objective function: ,
v" CBRW obtains more than 12%, 12%,
freq(m) — freq(v) object_score(x) = Z wy X value_score(gs(xz)) (9) )
dev(v) = feF 13%, 7% and 17% improvement on
freq(m)
_ re(f) - these 10 data sets
where wy = S el S a feature weighting component.
fer

Guansong Pang, Longbing Cao, Ling Chen. Identifying Outliers in Complex Categorical Data by Modeling Feature Value Couplings. IJCAI16.



End-to-end learning from low-quality complex
data

* Highly imbalanced * High to ultrahigh-dimensional
* Highly sparse * Noisy
* Redundant

» AUC: 7% and 21% improvement
over COMP and FPOF

» P@n: 37% and 90% over COMP
and FPOF

Searching the Best S Based on Ry,

Outlier Scoring Function ¢bg Using LeSiNN , Using iForest
) Candidate Optlmaln e oo
Data Set X Subsets Feature Outlier Subset S Optimal Outlier
ata Set ‘ ; x © 0.8 w 0.8
Subset § Ranking R¢s Ranking R%, e S
_ - S CINFO. =TT
—— Q. —-RegFs 0.7 —-RegFs
FB o FB
CARE CARE
Ranking Evaluatlon Function J(R, ) a. énm 0. ORG
1% 4% 8% 16% 32% 1% 4% B% 16% 32%
Percentage of Relevant Features Percentage of Relevant Features
IR, .k A ! Figure 2: AUC Performance on Data with Different Levels of
Dg OS x . - - .
|S‘ k|5| Noisy Features. “ORG” denotes the bare LeSiNN/iForest. All meth-
ods obtain AUC of one with more than 32% relevant features.
POP CBRW ZERO iForest
Data |7 |F'| |F) - POFS CBFS DSFS POFS CBFS DSFS | POFS CBFS DSFS 1o
w7a 300 180 26 0.8673 | 0.8220 0.7738 0.5155 | 0.7701 0.7885 0.5155 | 0.5893 0.7674 0.5155 ?g::lros
wap.wc 4229 2537 3570| 1.0000 | 0.9026 0.8739 0.6387 | 0.7339 0.7429 0.5395 | 0.5%02 0.6816 0.5121 CaRE
R8 9467 5680 2006 | 0.9479 NA NA 0.9249 | 0.8902 NA 0.8758 | 0.8370 NA 0.8426 510 =
CAL16 253 151 194 | 0.9928 | 0.9930 0.9928 0.9931 | 0.9910 0.9900 0.9903 | 0.9828 0.9824 09811 _E - _g
AD 1555 933 49 0.9290 | 0.7845 0.7456 0.7432 | 0.7547 0.7587 0.7428 | 0.7345 0.7723 0.7435 & tpe— - &
CAL28 727 436 564 | 0.9608 | 0.9603 0.9604 0.9599 | 0.9566 0.9584 0.9540 | 0.9488 0.9524 0.9421 100 L
CelebA 39 23 34 0.8968 | 0.8901 0.8818 0.8502 | 0.8519 0.8511 0.7722 | 0.8038 0.8213 0.6973 10°
PCMAC 3039 1823 1256| 0.6935 | 0.6759 0.6678 0.6413 | 0.5952 0.5793 0.4959 | 0.5509 0.5425 0.4745 P o 16000 cann0 256000 2 200 1600 £a00
BASE 4320 2592 1895| 0.6521 | 0.6294 0.6558 0.5760 | 0.5396 0.5897 0.4375 | 0.5096 0.5417 0.4233 Data Size Data Dimensionality
WebKB 6601 3960 3487 | 0.7306 | 0.7449 NA 0.7251 | 0.7377 NA 0.6995 | 0.7292 NA 0.6891 ] ] i . .
RELA 4080 2448 2101| 0.7449 | 0.7256 0.7352 0.6984 | 0.6580 0.6793 0.5987 | 0.6268 0.6459 0.5844 Figure 3: Runtime of CINFO and Its Competitors Using LeSiNN.
Arthy 64 38 13 | 0.6762 | 0.6095 0.6527 0.5625 | 0.6074 0.6540 0.5626 | 0.6065 0.6543 0.5624 SDR'? de “‘?jtes th‘;’j bare LESd‘I;IN- L_Og“','ghmlc 5‘:31]1‘35 af‘;‘_ “Ssd-
Average | 0.8410 | 0.7943 0.7940 0.7357 | 0.7572 0.7592 0.6820 | 0.70901 0.7362 0.6640 tmilar trends can be expected lor using 1Forest as the outlier de-
Poval 0.0098 00117 00010 | 00024 00020 0.0005 | 0.0005 0.0020 00005 tector, since LeSiNN and iForest have similar time complexities.
-value = B X K B A X K . .|




Comments

Real-life data is often highly
complex, while quality may
not be good

Enterprise data is often of
low quality but with
ultrahigh-dimensionality

N

Existing models on such
data for risk analysis often
either do not deliver
actionable results or do not
work at all



Concluding remarks




We are lucky in
the era of data
science and

new-generation
Al, however

Many intrinsic working mechanisms and challenges in complex
data, behaviors and systems may be still unclear, invisible, and

unrepresentable

Today’s data science is at its early stage, machine learning and Al
are highly tailored for particular circumstances, assumptions and
purposes

Today’s capabilities and capacities for understanding,
representing, recognizing and learning data complexities and
intelligences are still limited and far from fully capturing their
intricate nature

While recent community interest has shifted to topics including
data science/Al ethics, interpretability, reproducibility, and
autoML, many fundamental issues in building actionable
analytics and learning theories and systems are still open



Thank You Very Much

Home Research -  ConsuMtancy «

Survey on Negative Sequence Analytics with CSUR
Postdoc, PhD and visiting studentscholar opportunities
2018 ARC Discovery Grant on deep behavior analytics
AAAI2019 tutorial: Behavior Analytics: Methods and
Applications
Three papers accepted by AAAI2019
NIPS2018 paper: Gamma.Polsson Dynamic Matrix Factorization
Embedded with Metadata Influence

More New

The Data Sclence Lab has been dedicated to fundamental research In data sclence and complex Intelligent
systems over a decade, mainly motivated by

o Signifi real-world i and il identified in different domains and

g
areas, in particular, public sector, business, finance, online and living societies, core industries, and socio-

economic areas;

of ical gaps and i PP identified in both existing theoretical
systems of datalintelligence sciences and addressing theoretical and/or real-world challenges and

problems.

Enterprise data are growing increasingly bigger and bigger, more and more complex, and more and more
valuable. Data science and intelligence science have played critical roles in discovering the intelligence, value
and Insight and in recommending smarter decision-making actions for enterprise innovation, productivity
transformation and competitive strength upgrading. Our team has been well known for its leadership in industry
and corporate engagement, high standard and demonstrated impact in assisting major industry and government
organizations in bullding

the thinking and foundation

The thinking and foundation to design, Implement, manage, review and optimize enterprise data science
innovation decision-making, pians, policies, mechanisms and specifications

the competencies and skills

The competencies and skills to creale, undertake and optimize enterprise data science infrastructure.

the qualification: [ )
Master's/doctoral courstl arll c orkd ot | and i 3

science.

| 'g\

Data
Science

Thinking

#*\

IJCAI-PRICAI
YOKOHAMA
2020

International Joint Conference
on Artificial Intelligence - Pacific
Rim International Conference
on Artificial Intelligence.

1JCAI-2020 Special Track on Al in FinTech

FinTech (or Fintech), or financialtechnology, is atthe epicentre of sy

services, economy, media, an

e
FinTech nurtures new financial and economic mechanisms,

models, products, services, and opp d

efficiency, customer

experience, risk mitigation, regulation, and security. Al is a keystone driver of FinTech

Topics

This Special Track on Al in FinTech seeks to stimulate the discussion, research and applicationson Al for FinTech. We solicit
quality papers on the state-of-the-art theoretical research, visionary opinion, and practical advancements of Al in FinTech

Topics include butare not limited to:

. andglobal
behaviors, events and their impactand risk

. Jointly modelling natural, online, social, economic,
cultural and poltical factorsin finance

o and

heterogeneous financialevents and impact
+  Analyzingand modeling high-dimensional,
sequential and evolving financialevents and impact
=

knowledge graphand repositories

L Al for faster, cheaper and smarter design,
simulation and evaluation of new financial
mechanisms, models, products and services

+  Real-time intelligentfinancialanalysisand

Al to analyze, predict and intervene new
cybersecurity, fraud and risks in banking, insurance
andfinance
Non-11D, shallow, deep, reinforced analysis,

and learningof
networks, systems and problems
Cross-market, product, indicator, platiorm and
network modelling, hologram and risk analysis
Analyzing financial crisis, exception, emergence,
uncertainty and ill-to un-structured systemic risk
Data-driven theories and tools for digital assets and
their valuation, risk analysisand management
New blockchain theories and tools for
cryptocurrency, digital asset pricing, trading,
mechanism design, smart contract, open bankingand
investment

cloud, online and

*+ Alenabled RegTech for digital authentication and
identification and intelligent regulation

+  Aifor actionable, active, real-time, tailored and
automated regulation of new, digital and mobile
financial services

*+  Intelligentinnovations in credit loans, SMEs and

i i 2, P2P lending, ing.

robo-advising digital payment, dynamic credit
rating, and assetpricing

talgorithm: interfaces and
systems for digital, mobile, virtual and Internet-based
banking, financing, capital markets, RegTech,
InsurTech, and PayTech
Al for assuringtrust, privacy, security, compliance,
explainability and ethics in FinTech
Better practice and lessons of Al-enabled FinTech
into implementation and productization
Other important aspects, issues and progress
associated with Al in FinTech

Important Dates

+ Abstract submission deadline: January 15,2020 (11:59PM UTC-12)

*  Paper submission deadline: January 21,2020 (11:59PM UTC-12)

Submission, Review and Proceedings

* Author response period: March 21-25, 2020
« Papernotification: April 19,2020

Exactly the same as the 1JCAI-20 main track. Please refer to htp: 2i20 org/calt-for-papers-fintech htmi for instructions.
Enquiries
Please send all enquiries to the Special Track Chair Longbing Cao (Longhing Cao@uts edu au).

July 11-17, 2020. Yokohama, Japan.

IEEE/ACM/ASA

D

+* Postdoc fellowship

¢ PhD scholarships

International Journal of

DATA SCIENCE
and ANALYTICS
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